

VIDYA BHAWAN, BALIKA VIDYAPITH

Shakti Utthan Ashram, Lakhisarai-811311(Bihar)

(Affiliated to CBSE up to +2 Level)

Class: 10th

Subject: Mathematics

Date: 22.11.2020

EXERCISE 10.2

Q.8. A quadrilateral ABCD is drawn to circumscribe a circle (see figure). Prove that: AB + CD = AD + BC

Sol. Since the sides of quadrilateral ABCD, i.e., AB, BC, CD and DA touch the circle at P, Q, R and S respectively, and the lengths of two tangents to a circle from an external point are equal.

AP = AS BP = BQ DR = DS CR = CQAdding them, we get (AP + BP) + (CR + RD) = (BQ + QC) + (DS + SA) $\Rightarrow AB + CD = BC + DA$ which was to be proved.

Q.9. In the figure, XY and X'Y'are two parallel tangents to a circle with centre 0 and another tangent AB with point of contact C intersecting XY at A and XY' at B. Prove that ZAOB = W.

Sol. : The tangents drawn to a circle from an external point are equal.

 $\therefore AP = AC$

In \triangle PAO and \triangle AOC, we have:

AO = AOOP = OCAP = AC $\Rightarrow \Delta PAO \cong \Delta AOC$ $\therefore \angle PAO = \angle CAO$

[Common] [Radii of the same circle] $\angle PAC = 2 \angle CAO$...(1) Similarly $\angle CBQ = 2 \angle CBO$...(2) Again, we know that sum of internal angles on the same side of a transversal is 180°. $\therefore \angle PAC + \angle CBQ = 180^{\circ}$ $\Rightarrow 2\angle CAO + 2 \angle CBO = 180^{\circ}$ [From (1) and (2)]

 $\Rightarrow 90^{\circ} + \angle AOB = 180^{\circ}$ $\Rightarrow \angle AOB = 180^{\circ} - 90^{\circ}$ $\Rightarrow \angle AOB = 90^{\circ}.$

Q.10. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

Sol. Here, let PA and PB be two tangents drawn from an external point P to a circle with centre O.

Now, in right \triangle OAP and right \triangle OBP, we have

PA = PB OA = OB [Tangents to circle from an external point P] [Radii of the same circle] [Comm]

OP = OP \therefore By SSS congruency,

 $\Delta \text{ OAP} \cong \text{OBP}$

: Their corresponding parts are equal.

∠OAA = ∠OPB

And $\angle AOP = \angle BOP$

 $\Rightarrow \angle APB = 2 \angle OPA \text{ and } \angle AOS = 2 \angle AOP$

But ∠AOP = 90° – LOPA

 $\Rightarrow 2 \angle AOP = 180^{\circ} - 2 \angle OPA$

 $\Rightarrow \angle AOB = 180^{\circ} - \angle APB$

 $\Rightarrow \angle AOB + \angle APB = 180^{\circ}.$